Conjugate convolution operators and inner amenability

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuityof Operators Intertwiningwith Convolution Operators

Let G be a locally compact abelian group, let m be a bounded complex-valued Borel measure on G; and let Tm be the corresponding convolution operator on LðGÞ: Let X be a Banach space and let S be a continuous linear operator on X : Then we show that every linear operator F : X ! LðGÞ such that FS 1⁄4 TmF is continuous if and only if the pair ðS;TmÞ has no critical eigenvalue. # 2002 Elsevier Sci...

متن کامل

Sofic groups and convolution operators

Conjecture: Let Γ be a discrete group, f ∈ L(Γ) and Tf : L (Γ) → L(Γ) be the right convolution by f . Then if Tf is injective, it is surjective as well. We prove the conjecture for the class of sofic groups. AMS Subject Classification: 43A20

متن کامل

ACTA UNIVERSITATIS APULENSIS No 18/2009 AMENABILITY AND WEAK AMENABILITY OF LIPSCHITZ OPERATORS ALGEBRAS

In a recent paper by H.X. Cao, J.H. Zhang and Z.B. Xu a α-Lipschitz operator from a compact metric space into a Banach space A is defined and characterized in a natural way in the sence that F : K → A is a α-Lipschitz operator if and only if for each σ ∈ X∗ the mapping σoF is a α-Lipschitz function. The Lipschitz operators algebras L(K,A) and l(K,A) are developed here further, and we study thei...

متن کامل

Convolution Operators and Zeros of Entire Functions

Let G(z) be a real entire function of order less than 2 with only real zeros. Then we classify certain distributions functions F such that the convolution (G ∗ dF )(z) = ∫∞ −∞G(z − is) dF (s) has only real zeros.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Belgian Mathematical Society - Simon Stevin

سال: 2012

ISSN: 1370-1444

DOI: 10.36045/bbms/1331153406